

Fig. 1. View of the molecular packing, with atom-numbering scheme indicated.

The basal plane of the $\mathrm{Cu}_{2} \mathrm{Ac}_{4}\left(\mathrm{PPh}_{3}\right)_{2}$ complex shows remarkable differences between the $\mathrm{Cu}-\mathrm{O}$ bond distances. The long $\mathrm{Cu}-\mathrm{O}(3)$ bond distance [1.976 (6) \AA] corresponds to the long distance $\mathrm{C}\left(3^{\prime}\right)-$ $\mathrm{O}\left(3^{\prime}\right)[1 \cdot 288(9) \AA]$ of the acetate group and indicates a weaker coordination of the $O\left(3^{\prime}\right)$ oxygen atom in comparison with $\mathrm{O}(4)$ which occupies the trans position in the basal plane with bond distance $\mathrm{Cu}-\mathrm{O}(4)$ 1.934 (5) \AA.

The selected interatomic distances and Cu -basal plane distances (see Table 3) show that replacement of water molecules in $\mathrm{Cu}_{2} \mathrm{Ac}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ by triphenylphosphine ligands led to an elongation of the $\mathrm{Cu}-\mathrm{Cu}$ distance through displacement of the Cu atoms from the basal planes. The elongation of the $\mathrm{Cu}-\mathrm{Cu}$ distance is followed by shortening of the $\mathrm{Cu}-\mathrm{O}_{\mathrm{av}}$ (in basal plane) distance. The replacement of water molecules

Table 3. Selected distances (\AA) for aqua and for triphenylphosphine copper(II) carboxylates

		Interatomic distances			Cu -basal
Complex	Ligand	$\mathrm{Cu}-\boldsymbol{L}$	$\mathrm{Cu}-\mathrm{Cu}$	$\mathrm{Cu}-\mathrm{O}_{\mathrm{av}}$	plane distance
$\mathrm{Cu}_{2} \mathrm{Ac}_{4} L_{2}$	$\mathrm{H}_{2} \mathrm{O}^{*}$	$2.156(4)$	$2.616(1)$	$1.969(3)$	0.192
		$2.161(1)$	$2.614(2)$	$1.969(2)$	0.191
	PPh_{3}	$2.570(2)$	$2.709(1)$	$1.956(5)$	0.245
$\mathrm{Cu}_{2} \mathrm{YL}_{2}$	$\mathrm{H}_{2} \mathrm{O}^{+}$	$2.140(3)$	$2.626(2)$	$1.955(4)$	0.258
	PPh_{3}	$2.570(2)$	$2.676(1)$	$1.967(3)$	0.226

$Y=2,9$-bis(methoxymethyl)-2,9-dimethyl-4,7-dioxadecanedioate-(2-) anion.

* de Meester, Fletcher \& Skapski (1973); Brown \& Chidambaram (1973).
\dagger McCrindle, Ferguson, McAlees \& Roberts (1981).
in $\mathrm{Cu}_{2} Y_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \quad[Y=2,9$-bis(methoxymethyl)-2,9-dimethyl-4,7-dioxadecanedionato(2-) anion」 by triphenylphosphine (McCrindle, Ferguson, McAlees \& Roberts, 1981) causes smaller changes in $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{O}_{\mathrm{av}}$ (in basal plane) distances. However, the displacements of the Cu atoms from the basal planes (see Cu -basal plane distance in Table 3) are in opposite directions. These differences can be explained by the different basicity of the ligands.

References

Brown, G. M. \& Chidambaram, R. (1973). Acta Cryst. B26, 2393-2403.
McCrindle, R., Ferguson, G., McAlees, A. J. \& Roberts, P. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1406-1414.

Meester, P. de, Fletcher, S. R. \& Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575-2578.
Ondrejovič, G., Valigura, D., Máriássy, M. \& Mroziński, J. (1985). Chem. Papers, 39, 49-58.

Pippy, M. E. \& Ahmed, F. R. (1968). NRC Crystallographic Programs. National Research Council of Canada, Ottawa, Canada.
Valigura, D., Koman, M., Ďurčanská, E., Ondrejovič, G. \& Mroziński, J. (1986). J. Chem. Soc. Dalton Trans. pp. 2339-2344.

Acta Cryst. (1988). C44, 603-605

The Structure of Di- μ-chloro-bis[chloro(η^{6}-hexamethylbenzene)ruthenium(II)]Chloroform (1/2)

By Fred B. McCormick* and William B. Gleason
3M Corporate Research Laboratories, St Paul, Minnesota 55144, USA

(Received 4 August 1987; accepted 25 November 1987)

Abstract. $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{18}\right)_{2}\right] .2 \mathrm{CHCl}_{3}, M_{r}=907 \cdot 26$, triclinic, $\quad P \overline{1}, \quad a=10.192(1), \quad b=10.953(1), \quad c=$

[^0]0108-2701/88/040603-03\$03.00
8.529 (2) $\AA, \quad \alpha=100.26$ (1),$\quad \beta=106.64$ (1), $\quad \gamma=$ $104.74(1)^{\circ}, \quad V=849.2(5) \AA^{3}, \quad Z=1, \quad D_{x}=$ $1.77 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation $(\lambda=0.71073 \AA), \mu=$ $16.9 \mathrm{~cm}^{-1}, F(000)=452, R_{1}=0.025$ for 2732 re© 1988 International Union of Crystallography
flections collected at $296(1) \mathrm{K}$. The molecule is essentially a dimer of the (η^{6}-hexamethylbenzene)RuCl_{2} moiety; each Ru is bonded to two sym-metry-related bridging $\mathrm{Cl}[\mathrm{Ru}-\mathrm{Cl}=2.460(1) \AA$, $\mathrm{Cl}-$ $\left.\mathrm{Ru}-\mathrm{Cl}^{\prime}=80.90(2)^{\circ}\right]$ forming a planar four-membered ring. A terminal $\mathrm{Cl}[\mathrm{Ru}-\mathrm{Cl}=2 \cdot 394(1) \AA$, and an η^{6}-hexamethylbenzene ring $\quad[\mathrm{Ru}$-ring \quad plane $=$ 1.654 (1) \AA] is also attached to each Ru. The hexamethylbenzene ring is planar with the methyl groups all displaced slightly towards Ru. The distance between the Ru atoms $[3.743$ (1) \AA] indicates no bonding interaction.

Introduction. Complexes of the general formula [$\eta^{6}-$ arene) $\mathrm{RuCl}_{2} \mathrm{l}_{2}$ have been useful starting materials for organoruthenium studies since their original synthesis from $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ and cyclohexadienes (Winkhaus \& Singer, 1967; Zelonka \& Baird, 1972; Bennett \& Smith, 1974). Although it would provide a valuable structural model for the wealth of chemistry based on these complexes (Bennett, Bruce \& Matheson, 1982), the structure of an [η^{6}-arene $\left.) \mathrm{RuCl}_{2}\right]_{2}$ complex had not been determined by X-ray diffraction techniques. In our current investigations of organoruthenium chemistry, we have obtained single crystals of $\left[\left\{\eta^{6}-\mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{6}\right\}\right.$ $\left.\mathrm{RuCl}_{2}\right]_{2}$ (Bennett, Matheson, Robertson, Smith \& Tucker, 1980) and have undertaken its X-ray diffraction analysis.

Experimental. The complex [η^{6}-hexamethylbenzene)$\left.\mathrm{RuCl}_{2}\right]_{2}$ was prepared from hexamethylbenzene and [$\left(\eta^{6}-p \text {-cymene) } \mathrm{RuCl}_{2}\right]_{2}$ as previously described (Bennett, Matheson, Robertson, Smith \& Tucker, 1980). Dissolution of $\left[\left(\eta^{6} \text {-hexamethylbenzene }\right) \mathrm{RuCl}_{2}\right]_{2}$ in a minimum amount of hot CHCl_{3} and allowing the red solution to cool gradually to room temperature produced red-orange prismatic crystals of the complex. The crystals became opaque within one hour after removal from the mother liquor, indicating probable desolvation. A suitable crystal $(0.30 \times 0.19 \times$ 0.44 mm) was mounted on a glass fiber and coated with epoxy to prevent desolvation. Intensities were measured with an Enraf-Nonius CAD-4 diffractometer using variable-speed ($2-10^{\circ} \mathrm{min}^{-1}$) $\omega-2 \theta$ scans of ($0.5+$ $0.35 \tan \theta)^{\circ}$ width and MoK $\alpha \quad(\lambda=0.71073 \AA)$ radiation. Unit-cell constants were determined from a least-squares fit to angular data for 25 reflections in the angular range $10<\theta<15^{\circ}$. Data were collected to $(\sin \theta) / \lambda$ of $0.594 \AA^{-1}$ (maximum $2 \theta=50.0^{\circ}$), $-12 \leq$ $h \leq 12,-13 \leq k \leq 13,-10 \leq l \leq 10$. Three standard reflections were monitored after each batch of 97 data; no intensity decay was observed. Of the 5946 reflections measured, 2973 unique [$R_{\text {int }}($ on $I)=3 \cdot 1 \%$], 2732 reflections with $I>3 \sigma(I)$ were considered observed. An empirical absorption correction ($\mu=$ $16.9 \mathrm{~cm}^{-1}$) based on a series of ψ scans (North, Phillips \& Mathews, 1968) was applied to the data. Relative

Table 1. Final fractional atomic coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

	\boldsymbol{x}	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Ru	0.33308 (2)	0.43845 (2)	0.05216 (2)	2.088 (4)
$\mathrm{Cl}(1)$	0.58612 (6)	0.58144 (7)	$0 \cdot 19396$ (7)	2.76 (1)
$\mathrm{Cl}(2)$	0.41551 (8)	0.25825 (7)	$0 \cdot 10309$ (8)	3.73 (2)
$\mathrm{Cl}(3)$	0.59590 (12)	0.06784 (9)	0.24669 (13)	6.18 (3)
Cl(4)	0.70430 (14)	-0.05211 (12)	0.50492 (12)	6.75 (3)
$\mathrm{Cl}(5)$	0.88234 (12)	0.05096 (14)	$0 \cdot 32059$ (13)	6.94 (3)
C(1)	$0 \cdot 1937$ (3)	0.4023 (3)	0.2028 (3)	2.84 (6)
C(2)	0.2638 (3)	0.5393 (3)	0.2418 (3)	2.96 (6)
C(3)	0.2520 (3)	0.6043 (3)	0.1058 (3)	2.90 (6)
C(4)	0.1752 (3)	0.5279 (3)	-0.0648 (3)	2.85 (5)
C(5)	0.1070 (3)	0.3897 (3)	-0.1035 (3)	2.75 (6)
C(6)	0.1141 (3)	0.3273 (3)	0.0301 (3)	2.76 (6)
C(7)	0.2069 (4)	0.3313 (4)	0.3409 (4)	4.39 (8)
C(8)	0.3543 (4)	0.6193 (4)	0.4223 (4)	4.63 (8)
C(9)	0.3278 (3)	0.7481 (3)	0.1469 (5)	4.40 (8)
C(10)	0.1687 (3)	0.5944 (3)	-0.2064 (4)	$4 \cdot 19$ (7)
C(11)	0.0323 (3)	0.3094 (4)	-0.2859 (4)	$4 \cdot 30$ (8)
C(12)	0.0451 (4)	0.1812 (3)	-0.0069 (5)	4.37 (8)
C(13)	0.7043 (4)	-0.0271 (3)	0.3071 (4)	4.09 (8)

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as
${ }_{3}^{4}\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b \cos \gamma B(1,2)+a c \cos \beta B(1,3)+\right.$ $b c \cos a B(2,3)]$.
transmission coefficients ranged from 0.860 to 0.999 with an average value of 0.939 . The structure was solved by Patterson and Fourier methods. Full-matrix least squares minimized $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, w=$ $1 / \sigma^{2}\left(F_{o}\right)$. H atoms at calculated positions $\left(r_{\mathrm{C}-\mathrm{H}}=0.95 \AA\right.$, $B_{\text {iso }}=5.0 \AA^{2}$) were included in the structure-factor calculations but were not refined, all other atoms refined anisotropically for 172 variables. Final $R=0.025$, $w R=0.039, \quad S=1.65$. Final $\quad(\Delta / \sigma)_{\max }=0.01$, $\Delta \rho_{\max }= \pm 0.5(1) \mathrm{e} \AA^{-3}$ on the final difference map. Atomic scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974) and programs used were those of Enraf-Nonius (1982). Final atomic parameters are given in Table 1.*

Discussion. The molecular structure and atomic labeling scheme are shown in Fig. 1 and the crystal packing in the unit cell is shown in Fig. 2. The bond lengths and angles are given in Table 2. The only crystallographically imposed symmetry is an inversion center midway between $\mathrm{Cl}(1)$ and $\mathrm{Cl}\left(1^{\prime}\right)$. The two chloroform solvate molecules [the $\mathrm{C}(13), \mathrm{Cl}(3), \mathrm{Cl}(4), \mathrm{Cl}(5)$ and $\mathrm{H}(19)$ atoms] are related by this inversion and appear to be normal. Overall, the geometry of [η^{6}-hexamethylbenzene) $\mathrm{RuCl}_{2} \mathrm{l}_{2}$ is quite similar to the related

[^1]osmium complex di- μ-chloro-bis[chloro(η^{6} - p-cymene) osmium(II)] (Watkins \& Fronczek, 1982). The bond lengths involving Ru in [(η^{6}-hexamethylbenzene) $\left.\mathrm{RuCl}_{2}\right]_{2}$ are actually slightly longer than the corresponding $\mathrm{Os}-\mathrm{Cl}$ and $\mathrm{Os}-\mathrm{C}$ bond lengths found in $\left[\left(\eta^{6}-p \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2} ; \quad \mathrm{Os}-\mathrm{Cl}($ terminal $)=2.389(2)$, $\mathrm{Os}-\mathrm{Cl}$ (bridge) $=2.450$ (2), $\quad \mathrm{Os}-p$-cymene (ring centroid $)=1.637$ (2) \AA (Watkins \& Fronczek, 1982). The hexamethylbenzene ring is essentially planar [maximum deviation from the mean plane of 0.015 (3) \AA] and the distance from the ring plane to the Ru atom is 1.654 (1) \AA. Each methyl group is displaced slightly [range $0.097-0.017$, average 0.055 (4) \AA] from the ring plane towards Ru. The C (ring) -C (methyl) distances are unremarkable except for $C(3)-C(9)$ which appears to be slightly shortened. The $\mathrm{C}-\mathrm{C}$ bonds within the ring appear to be essentially identical in length with the exception of $\mathrm{C}(2)-\mathrm{C}(3)$ which is abnormally long. The $\mathrm{Ru}-\mathrm{C}$ bond lengths vary somewhat, but the only significant deviation is the long $\mathrm{Ru}-\mathrm{C}(3)$ bond. We suspect these anomalies are related to the dominance of the structure by the heavy Ru and Cl atoms rather than chemically significant factors. The

Fig. 1. The molecular structure and labeling scheme for $\left[\left\{\eta^{6}-\right.\right.$ $\left.\mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{6} \backslash \mathrm{RuCl}_{2}\right]_{2}$.

Fig. 2. The unit cell. H atoms, except those on the chloroform solvate molecules, have been omitted for clarity.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Ru}-\mathrm{Cl}(1)$	2.460 (1)	$\mathrm{C}(1)-\mathrm{C}(7)$	1.516 (3)
$\mathrm{Ru}-\mathrm{Cl}(2)$	2.394 (1)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.457 (3)
$\mathrm{Ru}-\mathrm{C}(1)$	$2 \cdot 182$ (2)	$\mathrm{C}(2)-\mathrm{C}(8)$	1.511 (3)
$\mathrm{Ru}-\mathrm{C}(2)$	$2 \cdot 179$ (2)	C(3)-C(4)	1.418 (3)
$\mathrm{Ru}-\mathrm{C}(3)$	$2 \cdot 209$ (2)	$\mathrm{C}(3)-\mathrm{C}(9)$	1.493 (4)
$\mathrm{Ru}-\mathrm{C}$ (4)	$2 \cdot 185$ (2)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.428 (3)
$\mathrm{Ru}-\mathrm{C}(5)$	2.174 (2)	$\mathrm{C}(4)-\mathrm{C}(10)$	1.512 (3)
$\mathrm{Ru}-\mathrm{C}(6)$	$2 \cdot 189$ (2)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.424 (3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.420 (3)	C(5)-C(11)	1.506 (3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.431 (3)	C(6)-C(12)	1.508 (3)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}\left(1^{\prime}\right)$	80.90 (2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(9)$	121.1 (2)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(2)$	87.53 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 8$ (2)
$\mathrm{Ru}-\mathrm{Cl}(1)-\mathrm{Ru}{ }^{\prime}$	99.09 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	119.1 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120 \cdot 2$ (2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(10)$	120.1 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	121.1 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 0$ (2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	118.6 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(11)$	$120 \cdot 0$ (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.9 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(11)$	120.0 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	121.1 (2)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.0 (2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	119.0 (2)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(12)$	118.7 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.1 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(12)$	121.2(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	119.7 (2)		

Cl-bridged Ru atoms form a planar four-membered ring with a 3.743 (1) \AA separation between the $R u$ centers. This long distance precludes any direct $\mathrm{Ru}-\mathrm{Ru}$ interaction. The Ru -ring centroid vector intersects the four membered $\mathrm{Ru}-\mathrm{Cl}$ bridge plane ait a 146.0 (3) ${ }^{\circ}$ angle and the $\mathrm{Ru}-\mathrm{Cl}$ (terminal) bond vector intersects this plane at an $86.1(3)^{\circ}$ angle. The two hexamethylbenzene ring planes are parallel as demanded crystallographically and the planes are separated by 6.408 (2) $\AA[6.746$ (5) \AA between ring centroids]. The angle between the $\mathrm{Ru}-\mathrm{Cl}(2)$ vector and the Ru -ring centroid vector is 127.9 (2) ${ }^{\circ}$. The angles of the $\mathrm{Ru}-\mathrm{Cl}(1)$ and $\mathrm{Ru}-\mathrm{Cl}\left(1^{\prime}\right)$ vectors with the Ru -ring centroid vector are 128.8 (2) and $129.4(2)^{\circ}$, respectively.

References

Bennett, M. A., Bruce, M. I. \& Matheson, T. W. (1982). Comprehensive Organometallic Chemistry, Vol. 4, edited by G. Wilkinson, F. G. A. Stone \& E. W. Abel, pp. 691-820. Oxford: Pergamon Press.
Bennett, M. A., Matheson, T. W., Robertson, G. B., Smith, A. K. \& Tucker, P. A. (1980). Inorg. Chem. 19, 1014-1021.

Bennett, M. A. \& Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233-241.
Enraf-Nonius (1982). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A 24, 351-359.
Watkins, S. F. \& Fronczek, F. R. (1982). Acta Cryst. B38, 270-271.
Winkhaus, G. \& Singer, H. (1967). J. Organomet. Chem. 7, 487-491.
Zelonka, R. A. \& Baird, M. C. (1972). Can. J. Chem. 50, 3063-3072.

[^0]: * To whom all correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom positions, and a complete table of bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44574 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

